
5

QPSK Modulation & Demodulation

Project No. 3

Instructor: Dr. Mohammad Jubran

Name: Haitham Da’ana

ID: 1121331

Section: 10-11AM

6

I. Introduction:

In order to send and transmit more
data QPSK Modulation was introduced
to help transmit more data over
channel at lower bandwidth, the main
idea about QPSK is to divide the
transmitted bits into two segments, one
is quadrature, and the other is inphase.
The odd (odd bits are determined by
the sequence and position of the
oncoming input bits) bits by convention
are separated and called quadrature
bits, same goes with inphsae bits which
are the even bits, these bits are equal in
amplitude (same energy is used to
transmit either one odd or even), but
have different phase angles.

II. Theory:

1. Transmitter:

As mentioned before in the
introduction, the bits are divided into
two segments, one segment is called the
inphase and the quadrature and then
they are loaded onto the same carrier
frequency but at different phase angles,
see the figure below.

Figure(1): QPSK Modulator

They are partitioned by a multiplexer,
then loaded onto a carrier signal then
into a summer, and through an antenna
or a wire or any transmission medium,
they are distorted by additive white
Gaussian noise which is added to the
original signal.

2. Reciever:
At the receiver the signal is
collected and then directed
and multiplied by two carrier
frequencies one with phase
shift of 0 and one with 90
degrees phase shift, the
output is then directed to an
integrator with integration
period of 0 to Ts, the result

is 𝑟1, and 𝑟2, then they are
directed to an amplitude
shift keying detector which
detects the amplitude of the
signal and decides the
received quadrature and
inphase bit. See the figure
below:

Figure(2): QPSK Demodulation

Bits then enter multiplexer
for final sorting process.

6

III. Procedure of Matlab
Simulation of QPSK:

1. Stage one: Bits Generation
At first we generated about
one million random bits,
using randn, matrix was
generated in an array of size
(N/2,1), the quadrature bits
are then multiplied by with j,
and inphase are left to
reperesent the real side part
of the transmitted signal, the
transmitted signal is sum of
quadrature and inphase bits
and the noise

2. Stage two: Reciever
At the receiver side, a
simple comparator was
used to detect the bits of
the signal, using simple
two comparators, the first
comparator compares the
real part of the signal

with threshold of 0, if it’s
bigger than 1 is decided,

0 it’s below 0, same thing
with the imaginary part.
The signal is then

represented by zero’s and
ones.

3. Stage Three: Error Calculations
The randomly generated
signal is then compared
with the received signal
using a simple for loop to
check for each entry of
the TxBits array and the
RxBits array, if it detects
difference in bits, it
increments the error
counter, which is
initialized to be zero at
first.

4. Stage Four: Results
The matlab code was then made
into a function of signal voltage
V, it calculated the Symbol and
Bit Error Rate as function of V,
assuming that the Power in the
noise is assumed to be 1.

Voltage was calculated as
following:

(Signal-to-Noise Ratio)dB was
made to be an array 0 to 10,
Voltage was calculated as shown
below from the value of SNRdb,
Voltage was then obtained for
each value of SNRdb, and voltage
of signal was calculated and put
in an array as following:

𝑆𝑁𝑅𝑑𝑏 = 10𝑙𝑜𝑔10(𝑆𝑁𝑅)

 𝑆𝑁𝑅 = 10
𝑆𝑁𝑅𝑑𝑏

10

𝑃𝑠 = 10
𝑆𝑁𝑅𝑑𝑏

10

𝑉 = √10
𝑆𝑁𝑅𝑑𝑏

10

The results were Symbol Error
Rate & Bit Errror Rate drawn as
a function of SNRdb.

The theoretical Symbol Error
Rate of QPSK, is given by this
equation:

𝑃𝑄𝑃𝑆𝐾 =

6

IV. Results

The probability of symbol error of
QPSK that was obtained
experimentally through the code and
the actual theoretical one was drawn
and plotted on top of it for accuracy
comparison as shown in figure down
below:

Figure(3): SER vs SNR(dB)

It can be noted that the results
obtained are accurate and precise for
higher SNR ratios, and that there was a
deviation at Es/No=1 that is because
at lower values of SNRdB the value of
bit error is high.

The probability of bit error rate of
QPSK was obtained plotted, and the
theoretical one was also plotted on the
same figure as can be shown below:

V. Conclusion
It can be noted that our
results came accurate and
agrees with the theoretical
ones, and representing signals
as imaginary and real helped
us a lot in simulation process,
without getting involved in
time domain complications.

6

Appendix:
Matlab Code:
%%%% Transmitter %%%%

function BER = qpsk(v)

i=1;

N=2000000;

SNRdb=1:1:10;

Rb=1000;

Tb=(1/Rb);

Ts=Tb*2;

rN=rand(1,N)';

TxBits=round(rN)';

fc=Rb;

sq=[];

si=[];

TxBits_p=2*TxBits-1; %

for i=1:N

 if mod(i,2)==0

 e_bit=TxBits_p(1,i);

 si=[si e_bit];

 else

 o_bit=TxBits_p(1,i);

 sq=[sq o_bit];

 end

end

s=((si+j*sq)*1/sqrt(2))*v;

w=((1/sqrt(2))*randn(N/2,1))+j*((1/sqrt(2))*randn(N/2,1));

r=s+(w');

s_i=sign(real(r));

s_q=sign(imag(r));

RxSymbols=r;

Rx_i=[];

Rx_q=[];

RxBits=[];

for i=1:N/2

 x=r(1,i);

 y=real(x);

 z=imag(x);

 if (y)>0

 Rx_i=1;

 else

 Rx_i=0;

 end

 if (z)>0

 Rx_q=1;

 else

 Rx_q=0;

 end

 RxBits=[RxBits Rx_q Rx_i];

end

tempmatrix=zeros(2,N);

for i=1:N

 tempmatrix(1,i)=tempmatrix(1,i)+RxBits(1,i);

 tempmatrix(2,i)=tempmatrix(2,i)+TxBits(1,i);

end

6

compare=[];

compare=tempmatrix;

m=0;

for i=1:N

 u=compare(1,i);

 o=compare(2,i);

 if (u~=o)

 m=m+1;

 end

end

BER=m/N

SER=2*BER

end

Comparison Code

SNRdb=1:1:10;

rv=sqrt(10.^(SNRdb/10))

BERvsSNR=[];

BitER=[];

for i=1:1:10;

 v=rv(1,i)

 BERvsSNR=qpsk(v);

 BitER=[BitER BERvsSNR];

end

theorySer_QPSK = erfc(sqrt(0.5*(10.^(SNRdb/10)))) -

(1/4)*(erfc(sqrt(0.5*(10.^(SNRdb/10))))).^2;

SymbolER=2*BitER;

figure

semilogy(SNRdb,BitER,'-r','linewidth',2)

xlabel('Eb/No');

ylabel('Bit Error Rate');

title('Bit Error Rate vs Eb/No');

hold on;

semilogy(SNRdb, (theorySer_QPSK/2),'g*','linewidth',2);

legend('Bit Error Rate vs Es/No (Practical)','B Error Rate vs

Es/No(Theoritical)');

grid on;

hold off;

figure

semilogy(SNRdb,SymbolER,'-b','linewidth',2)

xlabel('Es/No');

ylabel('Symbol Error Rate');

title('Symbol Error Rate vs Es/No');

hold on;

semilogy(SNRdb, theorySer_QPSK,'r*','linewidth',1);

legend('Symbol Error Rate vs Es/No (Practical)','Symbole Error Rate vs

Es/No(Theoritical)');

hold off;

End of Document

6

